LS2 Dry Sleeve Kit Installation Guide
Thank you for purchasing the Darton state of the art new GM™ LS-2 Dry Sleeve Kit. The kit makes possible maximum bore sizes, increased cylinder strength and superior wear resistance.

Darton wants to provide you with the best technical information we have available to ensure that your sleeved engine will perform to your expectations. Therefore, we have formulated a program of required procedures and components, which we believe will ensure operating success of your sleeved engine in whatever application it will see service in.
INSTALLATION PROCEDURES
Revised 5-15-06

LS2 Dry Sleeve Kit Installation

Read and make sure you understand these instructions before proceeding with block machining. If you have questions concerning machining, assembly, proper tooling, machines, etc. call sales at Darton.

Preparation, Fixturing:
1. The block needs to be fully stripped, cleaned and inspected before machining. Main web cracks, or structural damage will prevent satisfactory sleeve installation.
2. Brand new blocks must be vibratory stress relieved prior to block machining. Failure to do this will result in out of round cylinder bores after the engine is fired up.

Setup and Block Machining:
1. With your block mounting fixture securely bolted to the CNC machine table, indicate the centerline of your block mounting bar in the “Y” axis direction. That will be your “Y” fixture or part offset depending on terminology used with your machine. You will only have to do this one time since this position will remain the same. The object is to correct for factory machining errors, block warpage. You want the dry liners installed directly over the crankshaft axis and not offset as would probably happen if you merely went off the existing cylinder centerline.

Now set the block up on the CNC machine. The preferred method is with precision made mounting rings located in the front and rear main bearing bores and with the bell housing face securely bolted to a fixture plate. Rotate your fixture so the left (driver’s side bank) is facing up. Indicate the rear deck surface of the block (by the bell housing) - photo 1. Rotate the block around the crank axis until you get close to zero run out across the deck from side to side. Lock your fixture when you are satisfied the block is true. Zero the degree wheel if so equipped. Note that most blocks will be warped front to back. This is why I recommend dialing in the deck surface at the rear of the block. Now indicate the “X” centerline of cylinder number one, (left bank first cylinder) - photo 2. The centerline position is your “X” fixture offset position. Enter the “X” and “Y” offsets in your machine’s fixture or part offset table.

2. Clean the rust preventative from the sleeves using lacquer thinner. Measure the bottom diameter of each sleeve. Generally the diameters will be very close - within .001” in any one set. Measure the diameters at 90 degrees and average the result - photo 3. The lower sleeve diam-

OSHA
Always use approved protective equipment for sight, hearing, breathing, and hands while machining or using chemicals.
MSDS sheets are available on chemicals supplied at: Loctite™ www.loctite.com/datasheets, O-Ring Lubricant www.dowcorning.com or www.dryfilmlubricants.com/prodo2.ntm.
© Darton International, Inc. 2006
eter specification is 4.275”. The block is bored .0015” to .0017” larger than the sleeve lower diameter. Do not attempt to install the sleeves if you cannot hold this tolerance. Call Darton for info on proper tooling and or machines to ensure a satisfactory job. The upper body diameter has a slight taper. Measure the diameter directly under the flange. This diameter specification is 4.325”. Again, the block will be bored .0015” to .0017” larger than your measured diameter.

3. Touch off your tools on the deck surface at the front of the left bank either before you begin machining or as you are about to use them, whichever you prefer - photo 4. Set your tool length offsets into your machine’s tool table. Machining depths are from the deck surface down.

4. Note that the bore center to center is 4.400”, same as a small block Chevy. You need to keep this centerline dimension to +-.0005”. Note that in order to maintain the required tolerances it is highly advisable you use a machine with flood coolant. It will be impossible to hold tolerance otherwise and a poor job will be the result.

5. First operation is to bore the four cylinders on the left bank to 4.170” diameter to the main bearing webs. Use a double cutter boring head with .030” radius inserts for this operation which will allow sizing in one pass - photos 5 and 6. Depth of cut is 6.250” from the deck surface.

6. Next operation is boring for the lower body diameter. Bore larger than sleeve as instructed above. Depth of bore should be 5.850” to clean up the casting at the bottom of the bore. Photos 7 and 8.

7. Next operation is boring for the upper body diameter. Again, bore larger than the measured sleeve diameter as instructed above. Machining depth should be 3.280” to 3.300”. Photo 9.

8. Next, machine the upper flange diameter to your measured diameter +.002”. The nominal diameter on the sleeve flange is 4.550”. Your flange bore should be 4.552” machined to a depth of .202”. You can bore or use circular interpolation for this cut dependent on your tooling and expertise. If you use circular interpolation with a carbide end mill, use two passes leaving ~ .010” for the finish pass. Photo 10. This will ensure in a better surface finish and rounder hole.

9. Repeat operations (5 through 8) on the opposite bank after indexing the block 90 degrees. Note that the offset for cylinder two (front cylinder on the right bank) is +.950” towards the rear of the block from cylinder one on the left bank. Make certain to adjust your new “X” offset in the machine fixture or part offset table else you will ruin your block. Photo 11.

10. Prior to removing the block from the machine, run a ball hone through all the bores. Remove the block, clean it, and deburr it. Make certain the head threads are clean. A thread forming tool should be run through the head bolt holes on used blocks. Photo 12.
Sleeve Installation:

1. It is not necessary but recommended to heat the block to no more than 80º for sleeve installation. Leaving the block sit in the sun for a few minutes is sufficient. If the machining was done properly cooled sleeves will easily install with a shot filled plastic mallet and drive home with an aluminum plate and hammer.

2. Apply a very thin coat of Loctite 515 or 518 flange sealer to the lower bore as shown. And to each upper bore as shown. Photo 13.

3. Chill sleeves in refrigerator or freezer. Drop them into the block two at a time making certain the sleeve flats are aligned. Do not drive the sleeves into place until all four are installed and aligned. The sleeves should go into the bore 3/4 or more of the way with very slight hand pressure. Photo 14.

4. Carefully drive sleeves into place using plastic mallet then aluminum plate with heavier steel or brass hammer. Drive a bit at a time so the flats remain in alignment with one another. Installed sleeves should look like photo 15.

5. Now install deck plates with Fel Pro 1041 or other composition style gasket. Torque ARP bolts to fifty ft./lbs. Let sit for at least 4-24 hours so the Loctite sets up; or you can use Loctite Primer #1649 or acetone for a 30 min to 4 hour set-up. Remove plates, deck flat, then finish bore and hone block. Sleeves are designed for finished bores between 4.125” to 4.155”. Photo 16.

Main cap studs and align honing are highly recommended.
NOTE:
1. BORE THRU TO MAIN WEB AT FINISH
BORE DIA +.010

NOTES:
Always use approved protective equipment for sight, hearing, breathing, and hands while machining or using chemicals. MSDS sheets are available on chemicals supplied at: Loctite™ www.loctite.com/datasheets, O–Ring Lubricant www.dowcorning.com or www.dryfilm lubricants.com/prodo2.ntm.

© Darton International, Inc. 2006
Always use approved protective equipment for sight, hearing, breathing, and hands while machining or using chemicals. MSDS sheets are available on chemicals supplied at: Loctite™ www.loctite.com/datasheets, O–Ring Lubricant www.dowcorning.com or www.dryfilm lubricants.com/prodo2.ntm. © Darton International, Inc. 2006
OSHA

Always use approved protective equipment for sight, hearing, breathing, and hands while machining or using chemicals. MSDS sheets are available on chemicals supplied at: Loctite™ www.loctite.com/datasheets, O–Ring Lubricant www.dowcorning.com or www.dryfilm lubricants.com/prodo2.ntm.
Always use approved protective equipment for sight, hearing, breathing, and hands while machining or using chemicals. MSDS sheets are available on chemicals supplied at: Loctite™ www.loctite.com/datasheets, O–Ring Lubricant www.dowcorning.com or www.dryfilm lubricants.com/prodo2.ntm.

© Darton International, Inc. 2006

PHOTO 7

PHOTO 8
NOTES:

OSHA

Always use approved protective equipment for sight, hearing, breathing, and hands while machining or using chemicals. MSDS sheets are available on chemicals supplied at: Loctite™ www.loctite.com/datasheets, O–Ring Lubricant www.dowcorning.com or www.dryfilm lubricants.com/prodo2.ntm.

© Darton International, Inc. 2006
OSHA
Always use approved protective equipment for sight, hearing, breathing, and hands while machining or using chemicals.
© Darton International, Inc. 2006
Always use approved protective equipment for sight, hearing, breathing, and hands while machining or using chemicals. MSDS sheets are available on chemicals supplied at: Loctite™ www.loctite.com/datasheets, O–Ring Lubricant www.dowcorning.com or www.dryfilmlubricants.com/prodo2.ntm.
OSHA

Always use approved protective equipment for sight, hearing, breathing, and hands while machining or using chemicals. MSDS sheets are available on chemicals supplied at: Loctite™ www.loctite.com/datasheets, O–Ring Lubricant www.dowcorning.com or www.dryfilmslubricants.com/prodo2.ntm.

© Darton International, Inc. 2006
FOR BEST RESULTS:
Darton recommends the use of a Cometic M.I.D. MLS head gasket. These head gaskets are specifically made for use with our M.I.D. kits and work with our LS-2 Dry Sleeve Kit.

NOTES/CAUTIONS:
1. Make sure that block and head surfaces are machined within proper RMS specification. (For specifications contact Cometic tech at (440) 354-0777).
2. Depending on the type of head bolts used, a re-torque of head bolts to proper specifications may be required.
Darton recommends the use of Evans coolant!

MPG+ for all street applications.

MPGR for full race applications.

OSHA
Always use approved protective equipment for sight, hearing, breathing, and hands while machining or using chemicals.

The cost-effective Sunnen CV-616 Automatic Cylinder Hone is one of the most versatile machines you can have in your shop. You can count on consistent results as the CV-616 produces the most precise cylinder bores possible, cylinder after cylinder, block after block.

Results with Sunnen Honing Stones on Darton Cylinder Sleeve Material

<table>
<thead>
<tr>
<th>EHU 412</th>
<th>EHU-412</th>
</tr>
</thead>
<tbody>
<tr>
<td>C30 PHT 731 - 45 Seconds</td>
<td>C30 PHT 731 - 30 Seconds</td>
</tr>
<tr>
<td>RA 23.14µ"</td>
<td>RA 15.4µ"</td>
</tr>
<tr>
<td>RY 231.14µ"</td>
<td>RY 162.4µ"</td>
</tr>
<tr>
<td>RZ 184.4µ"</td>
<td>RZ 127.4µ"</td>
</tr>
<tr>
<td>RPK 26.34µ"</td>
<td>RPK 10.5µ"</td>
</tr>
<tr>
<td>RVK 68.14µ"</td>
<td>RVK 40.9µ"</td>
</tr>
<tr>
<td>RK 80.14µ"</td>
<td>RK 35.4µ"</td>
</tr>
<tr>
<td>MR1 7%</td>
<td>MR1 5%</td>
</tr>
<tr>
<td>MR2 86%</td>
<td>MR2 88%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EHU 518</th>
<th>EHU 518</th>
</tr>
</thead>
<tbody>
<tr>
<td>C30 PHT 731 - 30 Seconds</td>
<td></td>
</tr>
<tr>
<td>RA 25.1µ"</td>
<td>RA 9.0µ"</td>
</tr>
<tr>
<td>RY 266.2µ"</td>
<td>RY 132.0µ"</td>
</tr>
<tr>
<td>RZ 198.3µ"</td>
<td>RZ 93.5µ"</td>
</tr>
<tr>
<td>RPK 29.9µ"</td>
<td>RPK 7.8µ"</td>
</tr>
<tr>
<td>RVK 44.5µ"</td>
<td>RVK 38.4µ"</td>
</tr>
<tr>
<td>RK 89.7µ"</td>
<td>RK 23.9µ"</td>
</tr>
<tr>
<td>MR1 6%</td>
<td>MR1 5%</td>
</tr>
<tr>
<td>MR2 88%</td>
<td>MR2 81%</td>
</tr>
</tbody>
</table>
Sunnen CV-616 Set-up

<table>
<thead>
<tr>
<th></th>
<th>JHU 623</th>
<th>JHU 623</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>10 μ"</td>
<td>6.4μ"</td>
</tr>
<tr>
<td>RY</td>
<td>99.6μ"</td>
<td>79.7μ"</td>
</tr>
<tr>
<td>RZ</td>
<td>85.5μ"</td>
<td>62.3μ"</td>
</tr>
<tr>
<td>RPK</td>
<td>17.8μ"</td>
<td>4.8μ"</td>
</tr>
<tr>
<td>RVK</td>
<td>18.8μ"</td>
<td>13.3μ"</td>
</tr>
<tr>
<td>RK</td>
<td>34.7μ"</td>
<td>20.9μ"</td>
</tr>
<tr>
<td>MR1</td>
<td>10%</td>
<td>4%</td>
</tr>
<tr>
<td>MR2</td>
<td>89%</td>
<td>89%</td>
</tr>
</tbody>
</table>

C30 PHT 731 - 15 Seconds

Results obtained with Sunnen MAN 845 honing oils. Results may vary with other oils.

©2004 Sunnen Products Co. Printed in U.S.A